Roller Blade Lab

Purpose: Determine the relationship between force, mass, and acceleration.

PART 1: Mass and acceleration

$$a = \underline{\Delta x}$$

$$\frac{1}{2} \cdot \Delta t^2$$

	Distance (m)	Force (N)	Time (sec)	Acceleration
Skater #1	3	20	4.2	
Mass = <u>45.5</u>	6	20	6.1	
Weight =				
Skater #2				
	3	20	7.2	
Mass = <u>65.9</u>				
Maight -	6	20	10.3	
weight =				

When the force remains constant but the mass is increased, the acceleration will: Increase / Decrease

PART 2: Force and acceleration

	Distance (m)	Force (N)	Time (sec)	Acceleration (m/sec ²)
Skater #1	3	30	3.2	
Mass = <u>45.5</u>	6	30	4.6	
Weight =				
Skater #2				
	3	30	5.6	
Mass = <u>65.9</u>				
	6	30	7.9	
Weight =				

When mass remains constant but the force is increased, the acceleration will: Increase / Decrease

General Conclusions:

- 1. As mass increases, acceleration _____ (if force is constant).
- 2. As force increases, acceleration ______ (if mass is constant).

Analysis:

- 1. What happened to the speed of the skater as they proceeded down the track?
- 2. What happened to the acceleration of the skater as they proceeded down the track?
- 3. Applying a **constant force** (or as close as we could get) produced a **CONSTANT** velocity or acceleration. (**circle one**) Look at your answers to #1, 2!
- 4. Assume the force is constant. If the mass increases, what happens to acceleration?
- 5. Assume the mass of the skater is constant. If the force increases, what happens to the acceleration?
- 6. Mass and force are _____related. Choose either:
- 7. Force and acceleration are _____related. Directly related Inversely related
- 8. Mass and acceleration are _____related.
- 9. Let's say a skater weighs 140 lbs. What would their weight be in Newtons?
- 10. Suppose a 3 N force is applied to the skater and **no movement results**. What **1 word** can be used to explain this?
- 11. You pulled a skater with a mass of 65 kg from rest a distance of 9.2 m in 5.0 sec.
 - a. What was the skater's acceleration?

b. What was the skater's **final velocity**? Solve for this using **2 different equations**! Equation 1: Equation 2:

- c. Calculate the **force** that was exerted on the skater?
- d. What was the skater's weight in Newtons?
- e. What was the skater's **weight** in **pounds**?_____