\qquad Hour \qquad

Roller Blade Lab

Purpose: Determine the relationship between force, mass, and acceleration.

$$
a=\frac{\Delta x}{1 / 2 \cdot \Delta t^{2}}
$$

PART 1: Mass and acceleration

Distance (m)	Force (N)	Time (sec)	Acceleration $\left(\mathrm{m} / \mathrm{sec}^{2}\right)$
3	20	4.2	
6	20	6.1	
3	20	7.2	
6	20	10.3	

When the force remains constant but the mass is increased, the acceleration will: Increase / Decrease

PART 2: Force and acceleration

Skater \# 1
Mass $=\underline{45.5}$
Weight $=$
Skater \#2
Mass $=\underline{65.9}$
Weight $=$

Distance (m)	Force (N)	Time (sec)	Acceleration $\left(\mathrm{m} / \mathrm{sec}^{2}\right)$
3	30	3.2	
6	30	4.6	
3	30	5.6	
6	30	7.9	

When mass remains constant but the force is increased, the acceleration will:
Increase / Decrease

General Conclusions:

1. As mass increases, acceleration \qquad (if force is constant).
2. As force increases, acceleration \qquad (if mass is constant).

Analysis:

1. What happened to the speed of the skater as they proceeded down the track?
2. What happened to the acceleration of the skater as they proceeded down the track?
3. Applying a constant force (or as close as we could get) produced a CONSTANT velocity or acceleration. (circle one) Look at your answers to \#1, 2!
4. Assume the force is constant. If the mass increases, what happens to acceleration?
5. Assume the mass of the skater is constant. If the force increases, what happens to the acceleration?
6. Mass and force are \qquad related.
7. Force and acceleration are \qquad related.
8. Mass and acceleration are \qquad related.

Choose either: Directly related Inversely related
9. Let's say a skater weighs 140 lbs . What would their weight be in Newtons?
10. Suppose a 3 N force is applied to the skater and no movement results. What 1 word can be used to explain this?
11. You pulled a skater with a mass of 65 kg from rest a distance of 9.2 m in 5.0 sec .
a. What was the skater's acceleration?
b. What was the skater's final velocity? Solve for this using $\mathbf{2}$ different equations!

Equation 1: Equation 2:
c. Calculate the force that was exerted on the skater?
d. What was the skater's weight in Newtons? \qquad
e. What was the skater's weight in pounds? \qquad

